Galois Theory and Painlevé Equations
نویسندگان
چکیده
— The paper consists of two parts. In the first part, we explain an excellent idea, due to mathematicians of the 19-th century, of naturally developing classical Galois theory of algebraic equations to an infinite dimensional Galois theory of nonlinear differential equations. We show with an instructive example how we can realize the idea of the 19-th century in a rigorous framework. In the second part, we ask questions arising from general Galois theory and Galois theoretic study of Painlevé equations. We also propose an infinite dimensional Galois theory of difference equations. Résumé (Théorie de Galois et Équations de Painlevé). — Dans une première partie, nous rappelons une excellente idée de mathématiciens du 19 siècle en vue d’étendre la théorie de Galois classique pour les équations algébriques en une théorie de Galois de dimension infinie pour les équations différentielles non-linéaires. Nous illustrons par un exemple instructif comment concrétiser cette idée de façon rigoureuse. Dans une deuxième partie, nous formulons des questions liées à la théorie de Galois générale et aux aspects galoisiens des équations de Painlevé. Nous esquissons, en outre, une théorie de Galois de dimension infinie pour les équations aux différences.
منابع مشابه
A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملNon-Integrability of Some Higher-Order Painlevé Equations in the Sense of Liouville
In this paper we study the equation w = 5w′′(w2 − w′) + 5w(w′)2 − w + (λz + α)w + γ, which is one of the higher-order Painlevé equations (i.e., equations in the polynomial class having the Painlevé property). Like the classical Painlevé equations, this equation admits a Hamiltonian formulation, Bäcklund transformations and families of rational and special functions. We prove that this equation ...
متن کاملAsymptotic Properties of a Family of Solutions of the Painlevé Equation P VI
In analyzing the question whether nonlinear equations can define new functions with good global properties, Fuchs had the idea that a crucial feature now known as the Painlevé property (PP) is the absence of movable (meaning their position is solution-dependent) essential singularities, primarily branch-points, see [8]. First order equations were classified with respect to the PP by Fuchs, Brio...
متن کاملX iv : s ol v - in t / 9 70 10 02 v 1 3 0 D ec 1 99 6 Painlevé equations in terms of entire functions ∗
In these lectures we discuss how the Painlevé equations can be written in terms of entire functions, and then in the Hirota bilinear (or multilinear) form. Hirota’s method, which has been so useful in soliton theory, is reviewed and connections from soliton equations to Painlevé equations through similarity reductions are discussed from this point of view. In the main part we discuss how singul...
متن کامل1 8 Se p 20 00 DEFORMATION OF OKAMOTO – PAINLEVÉ PAIRS AND PAINLEVÉ EQUATIONS
In this paper, we introduce the notion of generalized rational Okamoto–Painlevé pair (S, Y ) by generalizing the notion of the spaces of initial conditions of Painlevé equations. After classifying those pairs, we will establish an algebro-geometric approach to derive the Painlevé differential equations from the deformation of Okamoto–Painlevé pairs by using the local cohomology groups. Moreover...
متن کامل